翻訳と辞書
Words near each other
・ Parseh Tehran F.C.
・ Parseierspitze
・ Parsemus Foundation
・ Parsenahatti
・ Parsenn
・ Parsenn funicular
・ Parseoni
・ Parser (CGI language)
・ Parser (magazine)
・ Parser combinator
・ Parser Grammar Engine
・ Parseval
・ Parseval PL25
・ Parseval's identity
・ Parseval's theorem
Parseval–Gutzmer formula
・ Parsha, Bulgaria
・ Parshall
・ Parshall flume
・ Parshall Oil Field
・ Parshall Terry
・ Parshall, Colorado
・ Parshall, North Dakota
・ Parshall–Hankins Airport
・ Parshatatar
・ Parsheh
・ Parshevitsa
・ Parshin
・ Parshin chain
・ Parshin's conjecture


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Parseval–Gutzmer formula : ウィキペディア英語版
Parseval–Gutzmer formula
In mathematics, the Parseval–Gutzmer formula states that, if ''ƒ'' is an analytic function on a closed disk of radius ''r'' with Taylor series
:f(z) = \sum^\infty_ a_k z^k,
then for ''z'' = ''re''''iθ'' on the boundary of the disk,
:\int^_0 |f(re^) |^2 \, \mathrm\vartheta = 2\pi \sum^\infty_ |a_k|^2r^.
== Proof ==

The Cauchy Integral Formula for coefficients states that for the above conditions:
:a_n = \frac \int^\ z
where γ is defined to be the circular path around 0 of radius r. We also have that, for x in the complex plane C,
:\overline = |x|^2
We can apply both of these facts to the problem. Using the second fact,
:\int^_0 |f(re^) |^2 \, \mathrm\vartheta = \int^_0 \overline \, \mathrm\vartheta
Now, using our Taylor Expansion on the conjugate,
: = \int^_0 )^k}} \, \mathrm\vartheta
Using the uniform convergence of the Taylor Series and the properties of integrals, we can rearrange this to be
: = \sum^\infty_ \int^_0 \frac)(\frac\int^_0 \frac} \vartheta
Now, applying the Cauchy Integral Formula, we get
: = \sum^\infty_ (}) = \sum^\infty_ {|a_k|^2 r^{2k}}

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Parseval–Gutzmer formula」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.